Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Phenyl N-(4-methoxyphenyl)carbamate

Zheng Fang,^a* Yong-Lu Wang,^a Li-Li Ren^a and Ping Wei^b

^aSchool of Pharmaceutical Sciences, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and ^bSchool of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China Correspondence e-mail: fzcpu@163.com

Received 18 July 2009; accepted 21 July 2009

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.006 Å; R factor = 0.069; wR factor = 0.184; data-to-parameter ratio = 14.0.

The asymmetric unit of the title compound, $C_{14}H_{13}NO_3$, contains two crystallographically independent molecules, in which the aromatic rings are oriented at dihedral angles of 75.64 (3) and 83.14 (3)°. An N-H···O hydrogen bond links the two molecules. Weak intramolecular C-H···O interactions are observed in the two molecules. In the crystal structure, intermolecular N-H···O and C-H···O interactions link the molecules into a two-dimensional network.

Related literature

For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

 $\begin{array}{l} C_{14} {\rm H}_{13} {\rm NO}_3 \\ M_r = 243.25 \\ {\rm Monoclinic}, \ P_{2_1}/n \\ a = 9.869 \ (2) \ {\rm \AA} \\ b = 10.870 \ (2) \ {\rm \AA} \\ c = 23.319 \ (5) \ {\rm \AA} \\ \beta = 100.27 \ (3)^\circ \end{array}$

 $V = 2461.5 (9) Å^{3}$ Z = 8 Mo K radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 294 K 0.30 × 0.20 × 0.10 mm

Data collection

Enraf–Nonius CAD-4	4459 independent reflections
diffractometer	2109 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.045$
(North et al., 1968)	3 standard reflections
$T_{\min} = 0.973, \ T_{\max} = 0.991$	frequency: 120 min
4733 measured reflections	intensity decay: 1%

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.069$ 319 parameters $wR(F^2) = 0.184$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.43$ e Å $^{-3}$ 4459 reflections $\Delta \rho_{min} = -0.34$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1A\cdots O5$	0.86	2.19	3.038 (4)	170
$N2 - H2B \cdot \cdot \cdot O2^{i}$	0.86	2.22	3.062 (4)	166
$C6-H6A\cdotsO5^{ii}$	0.93	2.58	3.435 (5)	153
C9−H9A···O2	0.93	2.52	2.967 (5)	110
$C23 - H23A \cdots O2^{i}$	0.93	2.60	3.390 (4)	144
$C27 - H27A \cdots O5$	0.93	2.30	2.907 (5)	122

Symmetry codes: (i) x + 1, y, z; (ii) -x + 2, -y + 2, -z.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

The authors thank the Center of Testing and Analysis, Nanjing University for the support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2744).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-

- 359. Sholdrick C. M. (2009). Acta Crust. ACA 112, 122
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2009). E65, o1997 [doi:10.1107/S1600536809028785]

Phenyl N-(4-methoxyphenyl)carbamate

Z. Fang, Y.-L. Wang, L.-L. Ren and P. Wei

Comment

Some derivatives of benzoic acid are important chemical materials. We report herein the crystal structure of the title compound.

The asymmetric unit of the title compound contains two crystallographically independent molecules (Fig. 1), in which the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. Rings A (C1-C6), B (C8-C13) and C (C15-C20), D (C22-C27) are, of course, planar and they are oriented at dihedral angles of A/B = 75.64 (3) and C/D = 83.14 (3)°. Intramolecular N-H···O hydrogen bond (Table 1) link the two molecules (Fig. 1). There also exist two intramolecular C-H···O interactions (Table 1).

In the crystal structure, intramolecular N-H···O and intermolecular N-H···O and C-H···O interactions (Table 1) link the molecules into a two dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, to a cold stirring solution of 4-methoxybenzenamine (1.0 g) and triethylamine (0.8 ml) in methylene chloride (10 ml) was added phenyl chloroformate (1.0 ml) slowly at 273 K. The mixture was then warmed and stirred for 1 h at room temperature. The mixture was washed with water (20 ml), dried over sodium sulfate, and concentrated to near dryness. The crude product was purified by recrystallization from petroleum ether (yield; 1.3 g). Crystals suitable for X-ray analysis were obtained by slow evaporation of a petroleum ether solution.

Refinement

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,N)$, where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bond is shown as dashed line.

Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

 $F_{000} = 1024$

 $\theta = 10-13^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 294 KBlock, colorless $0.30 \times 0.20 \times 0.10 \text{ mm}$

 $D_{\rm x} = 1.313 {\rm Mg m}^{-3}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 25 reflections

Phenyl N-(4-methoxyphenyl)carbamate

Crystal data
C ₁₄ H ₁₃ NO ₃
$M_r = 243.25$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
a = 9.869 (2) Å
<i>b</i> = 10.870 (2) Å
<i>c</i> = 23.319 (5) Å
$\beta = 100.27 \ (3)^{\circ}$
$V = 2461.5 (9) \text{ Å}^3$
Z = 8

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.045$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.3^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.8^{\circ}$
T = 294 K	$h = 0 \rightarrow 11$
$\omega/2\theta$ scans	$k = 0 \rightarrow 13$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	<i>l</i> = −28→27
$T_{\min} = 0.973, \ T_{\max} = 0.991$	3 standard reflections
4733 measured reflections	every 120 min
4459 independent reflections	intensity decay: 1%
2109 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.069$	H-atom parameters constrained
$wR(F^2) = 0.184$	$w = 1/[\sigma^2(F_o^2) + (0.08P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
4459 reflections	$\Delta \rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$

319 parameters

 $\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	1.0212 (2)	0.7911 (3)	0.03978 (13)	0.0894 (8)
O2	0.8011 (2)	0.7329 (2)	0.01287 (11)	0.0730 (8)
O3	0.6882 (3)	0.3624 (3)	-0.20767 (12)	0.0811 (8)
O4	1.4527 (2)	0.6417 (3)	-0.07369 (12)	0.0818 (9)
O5	1.2693 (2)	0.7162 (2)	-0.03922 (11)	0.0731 (8)
O6	1.4470 (2)	1.1216 (2)	0.16973 (11)	0.0725 (8)
N1	0.9696 (3)	0.6635 (3)	-0.03360 (15)	0.0730 (9)
H1A	1.0567	0.6696	-0.0331	0.088*
N2	1.4897 (3)	0.7712 (3)	-0.00016 (13)	0.0618 (8)
H2B	1.5736	0.7542	-0.0026	0.074*
C1	0.9618 (5)	1.0279 (5)	0.1698 (3)	0.1066 (17)
H1B	0.9538	1.0851	0.1986	0.128*
C2	1.0165 (5)	0.9067 (6)	0.1852 (2)	0.1185 (18)
H2A	1.0409	0.8824	0.2239	0.142*
C3	1.0310 (4)	0.8289 (5)	0.1404 (2)	0.0975 (15)
H3A	1.0668	0.7505	0.1486	0.117*
C4	0.9940 (3)	0.8648 (4)	0.08460 (18)	0.0628 (10)
C5	0.9390 (4)	0.9807 (4)	0.07198 (19)	0.0745 (11)
H5A	0.9125	1.0061	0.0335	0.089*
C6	0.9246 (4)	1.0556 (5)	0.1160 (2)	0.0919 (14)
H6A	0.8851	1.1325	0.1069	0.110*
C7	0.9180 (4)	0.7285 (4)	0.0059 (2)	0.0894 (8)
C8	0.8940 (4)	0.5852 (3)	-0.07637 (18)	0.0628 (10)
С9	0.7833 (4)	0.5173 (4)	-0.06612 (18)	0.0689 (11)
H9A	0.7568	0.5211	-0.0298	0.083*
C10	0.7113 (4)	0.4439 (4)	-0.10902 (17)	0.0684 (11)
H10A	0.6362	0.3990	-0.1016	0.082*
C11	0.7492 (4)	0.4364 (4)	-0.16274 (18)	0.0627 (10)
C12	0.8617 (4)	0.5036 (4)	-0.17297 (18)	0.0724 (11)
H12A	0.8891	0.4986	-0.2090	0.087*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C13	0.9328 (4)	0.5771 (4)	-0.13035 (19)	0.0736 (11)
H13A	1.0079	0.6221	-0.1378	0.088*
C14	0.5858 (5)	0.2793 (4)	-0.1969 (2)	0.0984 (15)
H14A	0.5518	0.2336	-0.2317	0.148*
H14B	0.5115	0.3242	-0.1852	0.148*
H14C	0.6245	0.2236	-0.1664	0.148*
C15	1.2046 (4)	0.4562 (5)	-0.2066 (2)	0.0894 (14)
H15A	1.1504	0.4138	-0.2370	0.107*
C16	1.2464 (5)	0.5728 (5)	-0.2151 (2)	0.0938 (14)
H16A	1.2203	0.6100	-0.2513	0.113*
C17	1.3267 (4)	0.6362 (4)	-0.17070 (19)	0.0764 (12)
H17A	1.3553	0.7160	-0.1765	0.092*
C18	1.3637 (3)	0.5799 (4)	-0.11805 (17)	0.0645 (11)
C19	1.3217 (4)	0.4635 (4)	-0.1092 (2)	0.0778 (12)
H19A	1.3471	0.4261	-0.0730	0.093*
C20	1.2418 (5)	0.4019 (4)	-0.1541 (3)	0.0903 (14)
H20A	1.2130	0.3220	-0.1484	0.108*
C21	1.3919 (4)	0.7121 (3)	-0.03685 (16)	0.0584 (10)
C22	1.4700 (3)	0.8590 (3)	0.04237 (15)	0.0526 (9)
C23	1.5852 (3)	0.9022 (4)	0.07914 (16)	0.0629 (10)
H23A	1.6716	0.8719	0.0758	0.075*
C24	1.5739 (4)	0.9892 (4)	0.12045 (17)	0.0661 (11)
H24A	1.6528	1.0165	0.1451	0.079*
C25	1.4473 (3)	1.0370 (3)	0.12614 (15)	0.0554 (9)
C26	1.3334 (3)	0.9931 (4)	0.09065 (16)	0.0646 (10)
H26A	1.2471	1.0230	0.0944	0.078*
C27	1.3439 (3)	0.9049 (4)	0.04911 (17)	0.0688 (11)
H27A	1.2645	0.8760	0.0253	0.083*
C28	1.3265 (4)	1.1931 (4)	0.16771 (19)	0.0853 (13)
H28A	1.3391	1.2493	0.2000	0.128*
H28B	1.2499	1.1400	0.1699	0.128*
H28C	1.3089	1.2386	0.1319	0.128*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0469 (13)	0.107 (2)	0.118 (2)	-0.0070 (13)	0.0267 (13)	-0.0378 (17)
O2	0.0419 (13)	0.0875 (19)	0.092 (2)	0.0005 (13)	0.0174 (12)	-0.0078 (15)
O3	0.085 (2)	0.085 (2)	0.0725 (19)	-0.0031 (17)	0.0130 (15)	0.0021 (17)
O4	0.0475 (14)	0.114 (2)	0.0847 (19)	-0.0007 (15)	0.0136 (14)	-0.0360 (18)
O5	0.0390 (14)	0.095 (2)	0.0863 (19)	-0.0060 (14)	0.0130 (12)	-0.0183 (16)
O6	0.0538 (15)	0.0753 (18)	0.0846 (19)	0.0041 (14)	0.0023 (13)	-0.0187 (16)
N1	0.0414 (16)	0.081 (2)	0.100 (2)	-0.0004 (17)	0.0213 (17)	-0.009 (2)
N2	0.0363 (14)	0.088 (2)	0.0609 (18)	0.0009 (16)	0.0069 (13)	-0.0087 (18)
C1	0.072 (3)	0.141 (4)	0.104 (4)	-0.021 (3)	0.009 (3)	-0.049 (4)
C2	0.098 (4)	0.176 (5)	0.076 (3)	0.010 (4)	-0.001 (3)	0.023 (3)
C3	0.083 (3)	0.107 (4)	0.101 (3)	0.033 (3)	0.012 (3)	0.033 (3)
C4	0.0358 (18)	0.075 (3)	0.077 (3)	-0.0032 (19)	0.0079 (18)	-0.004 (2)

C5	0.058 (2)	0.097 (3)	0.069 (3)	0.009 (2)	0.014 (2)	0.018 (2)
C6	0.074 (3)	0.083 (3)	0.119 (4)	-0.010 (3)	0.018 (3)	-0.008 (3)
C7	0.0469 (13)	0.107 (2)	0.118 (2)	-0.0070 (13)	0.0267 (13)	-0.0378 (17)
C8	0.046 (2)	0.059 (2)	0.087 (3)	0.0060 (19)	0.019 (2)	0.002 (2)
C9	0.058 (2)	0.079 (3)	0.073 (3)	-0.001 (2)	0.023 (2)	0.005 (2)
C10	0.057 (2)	0.081 (3)	0.072 (3)	-0.005 (2)	0.022 (2)	0.007 (2)
C11	0.059 (2)	0.057 (2)	0.073 (3)	0.008 (2)	0.011 (2)	0.006 (2)
C12	0.074 (3)	0.066 (3)	0.084 (3)	0.004 (2)	0.035 (2)	-0.002 (2)
C13	0.061 (2)	0.069 (3)	0.100 (3)	-0.003 (2)	0.039 (2)	-0.001 (3)
C14	0.091 (3)	0.102 (4)	0.103 (4)	-0.026 (3)	0.017 (3)	0.001 (3)
C15	0.061 (3)	0.111 (4)	0.096 (4)	-0.008 (3)	0.015 (3)	-0.037 (3)
C16	0.086 (3)	0.122 (4)	0.072 (3)	0.000 (3)	0.010 (3)	0.000 (3)
C17	0.071 (3)	0.081 (3)	0.075 (3)	-0.014 (2)	0.008 (2)	0.002 (3)
C18	0.041 (2)	0.088 (3)	0.065 (3)	0.002 (2)	0.0099 (19)	-0.014 (2)
C19	0.070 (3)	0.079 (3)	0.086 (3)	-0.004 (2)	0.016 (2)	0.009 (3)
C20	0.077 (3)	0.081 (3)	0.113 (4)	-0.015 (3)	0.018 (3)	-0.010 (3)
C21	0.046 (2)	0.066 (3)	0.063 (2)	0.002 (2)	0.0094 (19)	0.002 (2)
C22	0.0417 (19)	0.062 (2)	0.054 (2)	-0.0021 (18)	0.0065 (16)	0.007 (2)
C23	0.0374 (19)	0.081 (3)	0.069 (2)	-0.0005 (19)	0.0063 (17)	-0.001 (2)
C24	0.043 (2)	0.082 (3)	0.069 (3)	-0.003 (2)	-0.0026 (17)	-0.003 (2)
C25	0.041 (2)	0.064 (3)	0.059 (2)	0.0010 (18)	0.0039 (17)	0.003 (2)
C26	0.042 (2)	0.082 (3)	0.070 (3)	0.007 (2)	0.0102 (18)	-0.007 (2)
C27	0.0359 (19)	0.087 (3)	0.081 (3)	0.0007 (19)	0.0022 (18)	-0.012 (2)
C28	0.066 (3)	0.087 (3)	0.103 (3)	0.012 (2)	0.015 (2)	-0.021 (3)

Geometric parameters (Å, °)

O1—C7	1.355 (5)	C10—H10A	0.9300
O1—C4	1.381 (4)	C11—C12	1.385 (5)
O2—C7	1.195 (4)	C12—C13	1.367 (5)
O3—C11	1.372 (4)	C12—H12A	0.9300
O3—C14	1.411 (4)	C13—H13A	0.9300
O4—C21	1.366 (4)	C14—H14A	0.9600
O4—C18	1.403 (4)	C14—H14B	0.9600
O5—C21	1.203 (4)	C14—H14C	0.9600
O6—C25	1.371 (4)	C15—C20	1.349 (6)
O6—C28	1.414 (4)	C15—C16	1.358 (6)
N1—C7	1.332 (5)	C15—H15A	0.9300
N1—C8	1.418 (5)	C16—C17	1.371 (6)
N1—H1A	0.8600	C16—H16A	0.9300
N2-C21	1.335 (4)	C17—C18	1.362 (5)
N2	1.414 (4)	C17—H17A	0.9300
N2—H2B	0.8600	C18—C19	1.359 (5)
C1—C6	1.279 (6)	C19—C20	1.369 (6)
C1—C2	1.445 (4)	C19—H19A	0.9300
C1—H1B	0.9300	C20—H20A	0.9300
C2—C3	1.371 (7)	C22—C27	1.376 (5)
C2—H2A	0.9300	C22—C23	1.378 (5)
C3—C4	1.344 (5)	C23—C24	1.368 (5)

С3—НЗА	0.9300	C23—H23A	0.9300
C4—C5	1.383 (5)	C24—C25	1.382 (5)
C5—C6	1.337 (6)	C24—H24A	0.9300
С5—Н5А	0.9300	C25—C26	1.357 (5)
С6—Н6А	0.9300	C26—C27	1.380 (5)
C8—C9	1.374 (5)	C26—H26A	0.9300
C8—C13	1.382 (5)	C27—H27A	0.9300
C9—C10	1.374 (5)	C28—H28A	0.9600
С9—Н9А	0.9300	C28—H28B	0.9600
C10—C11	1.372 (5)	C28—H28C	0.9600
C7—O1—C4	120.3 (3)	O3—C14—H14B	109.5
C11—O3—C14	118.0 (3)	H14A—C14—H14B	109.5
C21—O4—C18	116.4 (3)	O3—C14—H14C	109.5
C25—O6—C28	117.2 (3)	H14A—C14—H14C	109.5
C7—N1—C8	125.9 (3)	H14B—C14—H14C	109.5
C7—N1—H1A	117.0	C20-C15-C16	120.0 (5)
C8—N1—H1A	117.0	C20-C15-H15A	120.0
C21—N2—C22	126.9 (3)	C16-C15-H15A	120.0
C21—N2—H2B	116.6	C15—C16—C17	120.6 (5)
C22—N2—H2B	116.6	C15—C16—H16A	119.7
C6—C1—C2	119.2 (5)	C17—C16—H16A	119.7
C6—C1—H1B	120.4	C18—C17—C16	118.7 (4)
C2—C1—H1B	120.4	С18—С17—Н17А	120.6
C3—C2—C1	117.2 (5)	С16—С17—Н17А	120.6
С3—С2—Н2А	121.4	C19—C18—C17	121.0 (4)
C1—C2—H2A	121.4	C19—C18—O4	120.1 (4)
C4—C3—C2	120.8 (5)	C17—C18—O4	118.8 (4)
С4—С3—Н3А	119.6	C18—C19—C20	119.3 (4)
С2—С3—НЗА	119.6	С18—С19—Н19А	120.3
C3—C4—O1	120.5 (4)	С20—С19—Н19А	120.3
C3—C4—C5	119.9 (4)	C15—C20—C19	120.4 (5)
O1—C4—C5	119.3 (4)	C15—C20—H20A	119.8
C6—C5—C4	118.9 (4)	C19—C20—H20A	119.8
С6—С5—Н5А	120.5	O5—C21—N2	128.2 (4)
С4—С5—Н5А	120.5	O5—C21—O4	122.9 (3)
C1—C6—C5	123.9 (5)	N2—C21—O4	108.9 (3)
С1—С6—Н6А	118.1	C27—C22—C23	117.9 (4)
С5—С6—Н6А	118.1	C27—C22—N2	124.4 (3)
O2—C7—N1	127.8 (4)	C23—C22—N2	117.7 (3)
O2—C7—O1	123.0 (4)	C24—C23—C22	120.8 (3)
N1—C7—O1	109.2 (3)	C24—C23—H23A	119.6
C9—C8—C13	118.8 (4)	С22—С23—Н23А	119.6
C9—C8—N1	122.3 (4)	C23—C24—C25	121.1 (3)
C13—C8—N1	118.8 (3)	C23—C24—H24A	119.5
C8—C9—C10	120.6 (4)	C25—C24—H24A	119.5
С8—С9—Н9А	119.7	C26—C25—O6	125.2 (3)
С10—С9—Н9А	119.7	C26—C25—C24	118.3 (4)
C11—C10—C9	120.6 (4)	O6—C25—C24	116.4 (3)
C11—C10—H10A	119.7	C25—C26—C27	121.0 (3)

С9—С10—Н10А	119.7	C25—C26—H26A	119.5
O3—C11—C10	125.3 (4)	C27—C26—H26A	119.5
O3—C11—C12	115.7 (4)	C22—C27—C26	120.9 (3)
C10-C11-C12	118.9 (4)	С22—С27—Н27А	119.5
C13—C12—C11	120.4 (4)	С26—С27—Н27А	119.5
C13—C12—H12A	119.8	O6—C28—H28A	109.5
C11—C12—H12A	119.8	O6—C28—H28B	109.5
C12—C13—C8	120.6 (4)	H28A—C28—H28B	109.5
C12-C13-H13A	119.7	O6—C28—H28C	109.5
C8—C13—H13A	119.7	H28A—C28—H28C	109.5
O3—C14—H14A	109.5	H28B—C28—H28C	109.5
C6-C1-C2-C3	2.7 (8)	C20-C15-C16-C17	0.2 (7)
C1—C2—C3—C4	-0.7 (7)	C15-C16-C17-C18	0.0 (6)
C2—C3—C4—O1	173.6 (4)	C16-C17-C18-C19	-0.3 (6)
C2—C3—C4—C5	-0.9 (7)	C16—C17—C18—O4	176.2 (3)
C7—O1—C4—C3	106.2 (5)	C21—O4—C18—C19	-91.7 (4)
C7—O1—C4—C5	-79.3 (5)	C21—O4—C18—C17	91.7 (4)
C3—C4—C5—C6	0.5 (6)	C17—C18—C19—C20	0.4 (6)
O1—C4—C5—C6	-174.0 (3)	O4-C18-C19-C20	-176.0 (3)
C2—C1—C6—C5	-3.3 (7)	C16-C15-C20-C19	-0.1 (7)
C4—C5—C6—C1	1.7 (7)	C18—C19—C20—C15	-0.2 (6)
C8—N1—C7—O2	0.3 (8)	C22—N2—C21—O5	-4.3 (6)
C8—N1—C7—O1	179.2 (3)	C22—N2—C21—O4	175.8 (3)
C4—O1—C7—O2	-0.4 (7)	C18—O4—C21—O5	4.5 (6)
C4—O1—C7—N1	-179.4 (4)	C18—O4—C21—N2	-175.5 (3)
C7—N1—C8—C9	-34.6 (6)	C21—N2—C22—C27	-5.7 (6)
C7—N1—C8—C13	145.2 (4)	C21—N2—C22—C23	174.9 (3)
C13—C8—C9—C10	-0.8 (6)	C27—C22—C23—C24	-0.8 (5)
N1—C8—C9—C10	179.0 (3)	N2—C22—C23—C24	178.6 (3)
C8—C9—C10—C11	0.5 (6)	C22—C23—C24—C25	-0.7 (6)
C14—O3—C11—C10	-5.6 (5)	C28—O6—C25—C26	-18.3 (5)
C14—O3—C11—C12	171.3 (3)	C28—O6—C25—C24	165.1 (3)
C9—C10—C11—O3	177.2 (3)	C23—C24—C25—C26	1.7 (6)
C9-C10-C11-C12	0.3 (6)	C23—C24—C25—O6	178.6 (3)
O3-C11-C12-C13	-177.8 (3)	O6—C25—C26—C27	-177.9 (3)
C10-C11-C12-C13	-0.7 (6)	C24—C25—C26—C27	-1.3 (6)
C11—C12—C13—C8	0.3 (6)	C23—C22—C27—C26	1.2 (5)
C9—C8—C13—C12	0.4 (6)	N2—C22—C27—C26	-178.1 (3)
N1-C8-C13-C12	-179.3 (3)	C25—C26—C27—C22	-0.2 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1A···O5	0.86	2.19	3.038 (4)	170
N2—H2B···O2 ⁱ	0.86	2.22	3.062 (4)	166
C6—H6A···O5 ⁱⁱ	0.93	2.58	3.435 (5)	153
С9—Н9А…О2	0.93	2.52	2.967 (5)	110
C23—H23A···O2 ^{i}	0.93	2.60	3.390 (4)	144

С27—Н27А…О5	0.93	2.30	2.907 (5)	122
Symmetry codes: (i) <i>x</i> +1, <i>y</i> , <i>z</i> ; (ii) – <i>x</i> +2, – <i>y</i> +2, – <i>z</i> .				

Fig. 1

Fig. 2